
 
 
 
 

 
 
 
 
 

 
 

 
 
USER’S MANUAL 
 
 
ALICE Pixel IT Barrel  
MOSAIC Test System  
 
 
 
 
 

INFN sez Bari, CAD service 
 
 
July, 2015 



Revision Sheet 
 

User’s Manual  Page i 

Revision Sheet 
 

Release No. Date Revision Description 
Rev. 0 04/17/2015 User’s Manual Template, datasheet, documentation int/ext, checklist  
Rev. 1 05/03/2015 draft and conversion to word format 
Rev. 2 05/25/2015 first draft of all sections 
Rev. 3 06/15/2015 changed disposition for addressing methods (classes IPbus WBB) 
Rev. 4 06/25/2015 start conversion to doxygen 
Rev. 5 07/06/2015 second draft all section but doxymentation 
Rev. 6 07/20/2015 changed disposition for addressing methods (classes IPbus WBB) 
Rev. 7 07/23/2015 revised receiver buffer 
Rev. 8 07/29/2015 current release 

 
 
 



 
 

User’s Manual   Page ii 

USER'S MANUAL 
 

TABLE OF CONTENTS 

1 GENERAL INFORMATION .......................................................................................................... 

Page # 

1-1 

1.1 System Overview .................................................................................................................... 1-2 
1.1.1      First I/O LVDS ports .....................................................................................................................1-4 
1.1.2      Second I/O LVDS ports .................................................................................................................1-4 
1.1.3      LEMO ports ...................................................................................................................................1-5 
1.1.4      High Speed Input/Output ports ......................................................................................................1-6 
1.1.5      Ethernet port ..................................................................................................................................1-8 
1.1.6      FMC first slot .................................................................................................................................1-8 
1.1.7      FMC second slot ............................................................................................................................1-8 
1.1.8      Plugs to VME compliant chassis. ................................................................................................1-10 
1.1.9      FPGA ...........................................................................................................................................1-10 
1.1.10 DDR3 memory .............................................................................................................................1-10 
1.1.11 CPU LED .....................................................................................................................................1-11 
1.1.12 LEDs first block ...........................................................................................................................1-11 
1.1.13 LEDs second block ......................................................................................................................1-12 
1.1.14 PUSH BUTTON ..........................................................................................................................1-12 

1.2 Project References ................................................................................................................ 1-13 

1.3 Authorized Use Permission .................................................................................................. 1-13 

1.4 Information ........................................................................................................................... 1-13 

2 SYSTEM SUMMARY ...................................................................................................................... 2-1 

2.1 System Architecture: Firmware ....................................................................................... 2.1-15 

2.2 Receiver Buffer .................................................................................................................. 2.2-16 
2.2.1 Reading request and latency policy for packets in receiver buffer ................................................ 2.2-17 
2.2.2 The header of packets from receiver buffer ................................................................................... 2.2-18 
2.2.3 Size of data packet for transmission and the role of Data Collector .............................................. 2.2-18 
2.2.4 Remarks about Flags ...................................................................................................................... 2.2-18 

2.3 Addressing Wishbone Bus ................................................................................................ 2.3-19 

2.4 Front-End and Modes of Operation ................................................................................ 2.4-23 

2.5 Pulser .................................................................................................................................. 2.5-23 
2.5.1 How to set different operation modes for pulsing .......................................................................... 2.5-24 
2.5.2 Trigger and Pulse Delay ................................................................................................................ 2.5-24 
2.5.3 Number of pulses and general cautions ......................................................................................... 2.5-24 

2.6 Data generator ................................................................................................................... 2.6-25 
2.6.1 How to set Data Generator ............................................................................................................. 2.6-26 

2.7 Trigger Control Unit ......................................................................................................... 2.7-27 
2.7.1 Enable external trigger ................................................................................................................... 2.7-27 

2.8 Function and Data Flows .................................................................................................. 2.8-28 

2.9 IP bus control packet ......................................................................................................... 2.9-28 
2.9.1 IPbus Header .................................................................................................................................. 2.9-29 
2.9.2 IPbus Info Codes ............................................................................................................................ 2.9-29 
2.9.3 IPbus Transaction Types ................................................................................................................ 2.9-30 



 
 

User’s Manual   Page iii 

3 GETTING STARTED ...................................................................................................................... 3-1 

3.1 IP address configuration ........................................................................................................ 3-1 

3.2 Firmware upgrade .................................................................................................................. 3-2 

3.3 Network considerations .......................................................................................................... 3-2 

3.4 Launch the readout test program ......................................................................................... 3-3 

4 USING the SYSTEM ........................................................................................................................ 4-1 

4.1 Classes and Records Access Methods ................................................................................... 4-2 
 

TABLE OF TABLES 
Page # 

Table 1:   Pinout connection of HighSpeed connector   1-7

Table 2:   Standard and vendor codes for FMC plugs and socket   1-8

Table 3:   FMC LPC connector pinset   1-9

Table 4:   VME Backplane connectors and pin layout   1-10

Table 5:   CPU led blinking modes and meanings   1-11

Table 6:   Numeric code for errors at startup as displayed by LED blocks   1-11

Table 7:   Function of front panel leds during working operation   1-12

Table 8:   Header protocol for packaged data from Receiver Buffer   2.2-19

Table 9:   Format of FLAGS field in the header   2.2-19

Table 18: Mapping of I2C controller   2.3-20

Table 17: Mapping of Run Controller   2.3-21

Table 19: Mapping of pAlpide Control Interface   2.3-22

Table 10: Mapping of Pulser registers   2.5-25

Table 11: Mapping of Data Generator registers   2.6-26

Table 12: Mapping of registers in Trigger Controller Unit   2.7-27

Table 13: IPbus header format   2.9-29

Table 14: Definition and meaning of header fields   2.9-29

Table 15: Info Codes for IPbus header   2.9-30

Table 16: IP bus Transaction Types   2.9-30

Table 20: Sub system logic blocks   4-1

 

TABLE OF FIGURES 
Page # 

Figure 1: Main parts of MOSAIC board in a mechanical drawing   1-2

Figure 2: LVDS I/O port pinout   1-4

Figure 3: Soldering jumper pads for settings of LEMO   1-5

Figure 4: Pinset of the High Speed connector   1-6

Figure 5: Layout of leds on front panel and their binary assignment   1-11

Figure 6: Firmware architecture of MOSAIC system   2.1-15

Figure 7: Waveforms signals between receiver buffer and DUT   2.2-16

Figure 8: Block diagram of Front-End   2.4-23

Figure 9: Timing of pulses and delay in the pulser   2.5-24

 



1.0  General Information 
 

User’s Manual  Page 1 / 1-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 GENERAL INFORMATION 



1.0  General Information 
 

User’s Manual  Page 2 / 1-2 

1.1 System Overview 
MOSAIC is the acronym of “MOdular System for Acquisition Interface and Control”. 

A multi device testing platform implemented by a single Field Programmable Gate Array chip. 
The firmware infrastructure of its main component, a Field Programmable Gate Array FPGA provides the 
possibility to easy add user modules to the system. 

Mainly conceived for the testing of particle physics detectors and their related electronics the MOSAIC is 
able to read data through high speed serial links (ten receivers on a single board at rate up to 6.6 Gbps) or 
using slower channels such as general purpose Low Voltage Differential Signals LVDS lines (up to 126 
on a single board). 

The board comes equipped with four programmable LEMO Input/Output complying with Nuclear 
Instrument Module standard and two FMC-LPC mezzanine slots in order to provide connectivity/housing 
to many various Device Under Test interfaces (DUT in the following) and in various test setup. 

Figure 1: Main parts of MOSAIC board are enumerated in a mechanical drawing. LVDS I/O ports n.1 and 2; 
four NIM I/O n.3; HI Speed I/O ports n.4; Ethernet plug n.5; Two FMC-LPC mezzanine slots n.6 
and 7; Field Programmable Gate Array FPGA n.9. 1GB-DDR3 n.10 and status LEDs n.11-13. 



1.0  General Information 
 

User’s Manual  Page 3 / 1-3 

The system provide internally FPGA, a generator of data and a pulser to test connectivity respectively to 
external PC and DUT. More details are in following sections 2.5-23 and 2.6-25. 

The board also host DDR3 1GB memory for the temporary store of data. 

An Ethernet connection is provided for data transmission, control of operations and additional functions 
such as firmware upgrade, IP address configuration and board diagnostics at startup. The Ethernet 
interface is compliant with 803.x 10/100/1000 only full duplex 1.1.5 more details in following section . 

The FPGA architecture also provides an IP Bus transactor therefore IP Bus protocol is used for 
configuration and monitoring. 

The same Field Programmable Gate Array houses an 8-bits microprocessor, supervision of transmission 
of data to an external PC and ancillary functions. 

The board is a 2-unit wide 6U (6 x 12 inches) Versa Modular Eurocard VME standard for easy housing 
and power supply in a standard VME bus crate which would be the easiest way to supply power to the 
board, however this is not strictly necessary. Indeed the board only require 2 different supply namely at 
minus 12V for NIM I/O and +5V for the effective supply of the circuit (through several stabilized power 
supplies which you see located on the top right of the board). Moreover a power lines of +12V is fed to 
FMC slots, in case it could be required by added hardware. 

The system is conceived as client/server interface for users. Software routines to access features of the 
system are under development. 

No radiation hardness. The board does not include many of the provisions necessary when operating in 
irradiated area. 

As an example of possible application, the proposed circuit will be used to perform the functionality test 
of the future Inner Tracker pixel barrel for the upgrade of the ALICE experiment. 

 

Here following the description details about main parts as depicted in the mechanical drawing of 
the MOSAIC board Figure 1. 

 

 



1.0  General Information 
 

User’s Manual  Page 4 / 1-4 

1.1.1 First I/O LVDS ports 

About this first Input Output I/O Low Voltage Differential Signal LVDS ports we can highlight: 

a. Both LVDS port are made by a Robinson Nugent P 50E-068-P1-SR1-TG multi-pin connector, 
whose pin-out is shown in the following Figure 2. 

b. All LVDS signals are connected to FPGA pins (§bank number 13, 15 and 16) according to the 
classification proposed hereby which assign to every pin the suffix EXT followed by channel 
number, connector row and signal polarity. 

c. In the released MOSAIC device all signals are compliant with LVDS. 

1.1.2 Second I/O LVDS ports 

Second I/O LVDS port, it apply same specifications as the previous first LVDS port. 

Figure 2: LVDS I/O port pinout. Robinson Nugent P 50E-068-P1-SR1-TG multipin connector. 



1.0  General Information 
 

User’s Manual  Page 5 / 1-5 

1.1.3 LEMO ports 

a. There are four LEMO connectors of four separate channels provided for boards cooperation, for 
instance with signal such as Common clock, Trigger, Busy. 

b. The four channels are compliant with fast logic NIM standard also known as NIM logic.  

c. With reference to the picture in Figure 3, each connector can be configured to work as input or 
output by soldering jumpers located at the back of and close by the same connectors namely J8, J9, 
J17 and J18 respectively for the NIM signals numbered from 1 to 4. Each jumper merely consist of 
three pads; a soldering contact of the upper pad (I) with the middle pad (II) configure the channel 
as output and vice versa a soldering contact between the middle and the lower pad (II in contact 
with III) set the related channel as input. It is worth to notice that the adjectives upper and lower are 
here used with respect to orientation of Figure 1. 

 
 
 

 

Figure 3: the soldering jumper pads for settings of LEMO ports as input or output. 

 



1.0  General Information 
 

User’s Manual  Page 6 / 1-6 

1.1.4 High Speed Input/Output ports 

a. On the front panel there is a connector devoted to receive high speed signals and more in general to 
be connected with high speed devices. These channels are connected with ten high speed serial 
links and other ports of FPGA, following the pin-out shown in Table 1. 

b. Please NOTICE that only pins from first two rows (A and B) are connected resulting that the 
bottom plug is totally unconnected. Therefore lower plug cannot be used and it has to be left empty. 

c. Moreover all pins named GND are directly connected to the same ground on the PCB. 

d. The two channels named HSA and HSB at pins 31-35 of the row B are connected to M-LVDS 
drivers (multipoint low voltage differential signalling) compliant with standard TIA/EIA-899. As 
you expect for differential signals each channel take up two pins, denoted by (+) for positive and (-) 
for negative, beside ground pins. 

e. There are last two differential channels for clock distribution to the DUT. Those are located at pins 
31-35 of the row A and referred to as CLK40 in reference to an expected Front-End clock 
frequency of 40MHz. 

f. In the matter of serial links velocity we can point out that respective clocks signal are supplied by a 
Phase Locked Loop which is programmed through the FPGA. Therefore serial link are versatile 
and can be easily adapted to work at different frequencies in various applications. 

g. The port consists of a connecter HDI6-035-01-RA with cage HDC-035-01. According to the 
producer (Samtec) HDI6 denotes the 0,635 mm Eye Speed® HD connector at High Speed with 
High Density Receptacle, while 035 indicates the number of positions (per row). 

The pinset is shown in the following Figure 4. 

 
 
 

 

Figure 4: pinset of the High Speed connector located on the front panel ( HDI6-035 Eye Speed® by Samtec). 
Please notice that lower plug cannot be used because C and D rows are unconnected. 

 



1.0  General Information 
 

User’s Manual  Page 7 / 1-7 

 
HDI6 connector 

pin number 
Signal 

HDI6 connector 
pin number 

Signal 

A1 HSRX08N B1 HSTX08N 
A2 HSRX08P B2 HSTX08P 
A3 GND B3 GND 
A4 HSRX09N B4 HSTX09N 
A5 HSRX09P B5 HSTX09P 
A6 GND B6 GND 
A7 HSRX00N B7 HSTX00N 
A8 HSRX00P B8 HSTX00P 
A9 GND B9 GND 

A10 HSRX01N B10 HSTX01N 
A11 HSRX01P B11 HSTX01P 
A12 GND B12 GND 
A13 HSRX02N B13 HSTX02N 
A14 HSRX02P B14 HSTX02P 
A15 GND B15 GND 
A16 HSRX03N B16 HSTX03N 
A17 HSRX03P B17 HSTX03P 
A18 GND B18 GND 
A19 HSRX04N B19 HSTX04N 
A20 HSRX04P B20 HSTX04P 
A21 GND B21 GND 
A22 HSRX05N B22 HSTX05N 
A23 HSRX05P B23 HSTX05P 
A24 GND B24 GND 
A25 HSRX06N B25 HSTX06N 
A26 HSRX06P B26 HSTX06P 
A27 GND B27 GND 
A28 HSRX07N B28 HSTX07N 
A29 HSRX07P B29 HSTX07P 
A30 GND B30 GND 
A31 CLK40B_P B31 HSB+ (MLVDS) 
A32 CLK40B_N B32 HSB- (MLVDS) 
A33 GND B33 GND 
A34 CLK40A_P B34 HSA+ (MLVDS) 
A35 CLK40A_N B35 HSA- (MLVDS) 

Table 1: Pinout connection of HighSpeed connector (HDI6). Notice that GND pins are already connected 
through PCB. The two MLVDS signals to the DUT are referred as HSA and HSB. 



1.0  General Information 
 

User’s Manual  Page 8 / 1-8 

1.1.5 Ethernet port 

An Ethernet Gigabit connection with hardware control of IP fragmentation and TCP checksum provides 
communication with external PC (exploiting Direct Access Memory). The system sustains a transfer rate 
of about 120 MB/s. The interface implemented in MOSAIC is compliant with IEEE 802.3x 10/100/1000 
flow control with pause packet, UDP/IP for control and monitoring and TCP/IP protocol for data transfer. 
The Ethernet connection has to be used only in full duplex mode. Indeed half duplex mode is not 
supported by MOSAIC board

Project References

. A switch can be used to connect more boards if use together is required. 
Clearly, high transfer rate capability or full speed connection are suggested for best performance. For 
further detail about protocol please refer to RFC indicated in following paragraph  at 
page 1-13. 

1.1.6 FMC first slot 

Field Programmable Mezzanine Card (FMC) first slot. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Standard and vendor codes for FMC plugs and socket installed on the MOSAIC board. 
 
 
About the two FMC slots (this and the next one) we can highlight that: 

a. The connector used is an ASP-127796-01 by Samtec which is compliant with VITA 57 std. 

b. The VITA 57 SEAM/SEAF Series system provides 160 I/Os (this apply to Low Pin Count 
configuration LPC in the following) in a selectively loaded 40 x 10 configuration, in 10mm stack 
heights. A recap and comparison of FMC relevant codes for MOSAIC board is in Table 2. 

c. According to VITA 57.1 FMC LPC connection table the pin out is depicted in Table 3. 
Please note that only four columns (denoted by letters C,D,G and H) are used whereas other pins 
are Not Connected and indicated as NC in Table 3; that is known as Low Pin Count. 

d. Each FMC slot is connected also to one high speed transceiver among the other available inside 
FPGA (see DP0_C2M and M2C signals at pins 2,3, 6 and 7 of row C) and its related clock 
(GBTCLK0_M2C signals at pins 4 and 5 of row D). 

1.1.7 FMC second slot 

Second FMC slot applies specifications same as first FMC slot. 

Vita-57 Samtec Molex 
CC-LPC-10L ASP-127796-01 45971-4307 
MC-LPC-10L ASP-127797-01 45970-4307 

legenda 
CC 
MC 
LPC 
10 
L 

Socket of Carrier Side 
Terminal of Module Side, Mezzanine Card (MC) 
Low Pin Count 
10 mm height 
with Lead (no lead-free) 



1.0  General Information 
 

User’s Manual  Page 9 / 1-9 

 

 Table 3: FMC LPC connector pinset (NC = Not Connected). 



1.0  General Information 
 

User’s Manual  Page 10 / 1-10 

1.1.8 Plugs to Versa Modular Eurocard 6U compliant chassis. 
Aside providing easy housing one can notice that only few pins are used, therefore connected, among 
those available in VME bus as shown in [Table 4]. Specifically the MOSAIC board is provided to be 
connected to VME backplane merely in order to supply power at +5 Volts to the board circuits (and its 
main component the FPGA chip). Besides, other two power lines from VME back planes are connected, 
those are the pin 31 A and C respectively to the NIM (converter) circuitry and to the FMC plugs. 

1.1.9 FPGA 
The main component of MOSAIC board is a Field Programmable Gate Array FPGA 

a. Artix-7 FPGA XC7A200T Package FFG1156 

b. More details about firmware architecture will be discussed in further section . 

1.1.10 DDR3 memory 
Double Data Rate Random Access Memory DDR3L SDRAM SODIMM 

a. The MOSAIC board comes furnished with a 1.35V RAM module which is used as cache for the 
temporary store of data before to be transferred to an external PC. 

b. The part number of the module is MT4KTF12864HZ-1G6K1 by Micron. 

c. The module is 204-pin, small-outline dual in-line memory module (SODIMM).  

d. Module have memory storage of 1GB (128 Meg x 64), supply voltage VDD = 1.35V (1.283–
1.45V) bandwidth of 12.8 GB/s Memory Clock 1.25ns and data rate up to 1600 MT/s. 

e. At the moment the only RAM module supported by firmware is the above mentioned 
MT4KTF12864HZ-1G6K1 by Micron. 

Table 4: VME Backplane connectors and pin layout 



1.0  General Information 
 

User’s Manual  Page 11 / 1-11 

The front panel depicted on the left of Figure 1, hosts also the LEDs and a Push Button described in 
the following. 

1.1.11    CPU LED 
Function: this is a single led controlled by the CPU (internal of FPGA) which allows users to know the 
board state by its different blinking modes as in Table 5. 

Located: front panel, down to the left. 

Blinking timing (s) Meaning mode 
 ON OFF  

1.0 1.0 Normal operation mode 
0.3 0.1 Golden image loaded (please refer to Section 3.2) 
0.1 0.1 IP configuration request 
0.1 1.0 Error detected during startup  

Table 5: CPU led blinking modes and meanings. 

1.1.12    LEDs first block 
Those four Leds together with the four of the following second block are sequentially numbered from 
zero to seven starting from the bottom toward the top Figure 5 as in . 

The eight Leds have different utilization during normal operations and during startup. 

In the latter case leds are used to inform about errors detected during startup, displaying a binary code of 
the error according to the numeric code summarized in Table 5.  E.g. In case of SODIMM initialization 
timeout the second and fourth led (also denoted as Led[1] and Led[3]) will light up to indicate the error 
code number ten, namely 1010 in binary which is 0x0A in hexadecimal. 

 

 

 

 

CODE 
[hex] Error description 

01 Ethernet PHY initialization timeout 

02 One wire bus initialization error 

03 No IP address stored in EEPROM 

04 EEPROM write error 

08 SODIMM module not detected 

09 Wrong SODIMM module. 
Memory model is not valid for the firmware 

0A SODIMM initialization timeout 

Table 6: numeric code for errors at startup as displayed 
by LED blocks part n.11 and n.12. 

Figure 5: layout of leds on front panel 
and their binary assignment. 



1.0  General Information 
 

User’s Manual  Page 12 / 1-12 

All errors but the “No IP address stored in EEPROM” are blocking, namely the board hangs flashing the 
led and does not responds to Ethernet requests. In case of “No IP address stored in EEPROM” it will 
perform only the IP address configuration as described in the relate section. 

What following, it refers to the specific firmware implemented for the test of pAlpid
Table 7

e: during normal 
operations every led has its specific meaning as summarized in following . 

Tag Led/bit Num. meaning 

 
NIM 3 7 Unused 

NIM 2 6 Front End Clock 

NIM 1 5 Front End Pulse 

NIM 0 4 Front End Trigger 

State 3 3 Unused 

State 2 2 BUSY 
It also lights if RUN is off 

State 1 1 Running 

State 0 0 Front End PLL status = LOCKED 

Table 7: function of front panel leds during working operation. 

Lastly, please note that the lowest Led (Led or bit [0]) indicates that the Phase Locked Loop, which 
generates  the different read out clock, is locked. Since it is possible also to select an external clock it 
means that everything is working correctly. 

1.1.13    LEDs second block 
See above description of part.11. 

1.1.14    PUSH BUTTON 
The push button is used during IP address request procedure, details in the following Section 3.1. 

Located: front panel, down to the right. 



1.0  General Information 
 

User’s Manual  Page 13 / 1-13 

1.2 Project References 
List of the references that were used in preparation of this document. 

1. For more specifications concerning IPbus packet and transaction header, and the format of possible 
IPbus request/response please refer to “The IPbus Protocol An IP-based control protocol for ATCA/μ 
TCA” Version 1.4 - draft 1 18th Oct, 2011 available at link 

https://svnweb.cern.ch/trac/cactus/export/156/trunk/doc/ipbus_protocol.pdf  

2. MOSAIC system utilizes communication protocol complying with Ethernet 802.3x pause packet only 
full duplex (no half duplex

3. For further reference please refer to RFC http://www.rfc-editor.org/rfc.html 

) 10/100/1000. 

4. RFC 768 User Datagram Protocol    August 28, 1980  UDP 

5. RFC 791 Internet Protocol     September 1981  IPv4 

6. RFC 792 INTERNET control message Protocol  September 1981  ICMP 

7. RFC 793 TRANSMISSION CONTROL PROTOCOL September 1981  TCP 

8. RFC 826 An Ethernet Address Resolution Protocol November 1982  ARP 
9. Wishbone Bus Specification rev.B4 System-on-Chip Interconnection Architecture for Portable IP Cores  

by OpenCores Organization (2010) Richard Herveille, rherveille@opencores.org www.opencores.org 

10. UM10204   I2C-bus specification and user manual Rev. 6 — 4 April 2014 by NXP 

11. Doygen version 1.8.9.1 doxygen reference manual available at http://www.stack.nl/~dimitri/doxygen/ 
Copyright © 1997-2015 by Dimitri van Heesch free software under GNU General Public License 

12. pALPIDEfs datasheet ver.1.0b by ALICE ITS ALPIDE development team Last ed. 19/03/2013 

13. TDR Alice IT Barrel 

1.3 Authorized Use Permission 
Usage of the hardware and software described in the present documentation is limited to its owner via the 
terms of its development.  MOSAIC test system is wholly owned by INFN, and may not be used or 
referenced without their express consent. 

In no event shall INFN or any of the contributors be liable for any direct, indirect, incidental, 
consequential, exemplary, or special damages (including, but not limited to procurement of substitute 
goods or services; loss of use, data, or profits; or business interruption) resulting in any way from the use 
of this specification. By adopting this specification, the user assumes all responsibility for its use. 

This is a preliminary document, and is subject to change without notice

Verilog® is a registered trademark of Cadence Design Systems, Inc. 

. 

1.4 Information 
For additional information, CAD Service Team can be contacted through Team Leader/ INFN sez Bari 
Giuseppe De Robertis (Giuseppe.DeRobertis@ba.infn.it). 

 

 

 

https://svnweb.cern.ch/trac/cactus/export/156/trunk/doc/ipbus_protocol.pdf�
http://www.opencores.org/�
http://www.stack.nl/~dimitri/doxygen/�
http://www.stack.nl/~dimitri/doxygen/manual/index.html�
https://en.wikipedia.org/wiki/GNU_General_Public_License�
mailto:Giuseppe.DeRobertis@ba.infn.it�


2.0  System Summary 
 

User’s Manual  Page 14 / 1.4-14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0 SYSTEM SUMMARY 



2.0  System Summary 
 

User’s Manual  Page 15 / 2.1-15 

2 SYSTEM SUMMARY 
This section provides a general overview of the system and outlines its operation modes. 

2.1 System Architecture: Firmware 

 
Figure 6: Firmware architecture of MOSAIC system. 

The Figure 6 above, depict the firmware architecture of MOSAIC system. Starting from the top right we 
have an Ethernet interface (compliant with Ethernet 802.3x 10/100/1000 full duplex only) for the 
communication to an external computer. The latter can be a PC or a mainframe in charge for the control 
of operations, collection and further elaboration of data. The Ethernet interface can access the RAM 
memory contents thanks by direct access memory engine (DMA) and communicate with an internal CPU. 
The CPU, implemented in hardware internally to the FPGA, is mainly an 8-bit microcontroller with many 
functions such as CPU, RAM, ROM, I/O, interrupt logic, timer, etc.. 

Moreover we have a data collector unit and an IP-Bus transactor those two in connection with the above 
mentioned CPU. Thanks to the IP Bus transactor unit, the configuration and monitoring of operations can 
be done externally using the IP Bus protocol, for more details please refer to [1] of Project Ref. page 1-13. 

It is also provided an I2C interface for the connection with an expected power section of DUT. Besides 
we have the high speed receivers in charge of acquiring data from the DUT and the logic block of control 
signals including a pulse generator (pulser) and a logic block to handle the trigger. 

As portrayed in Figure 6 communications between those modules and IPBus transactor are conducted 
through a Wishbone Bus ®OpenCores which specifications can be found at item [9] of list on page 1-13. 
In the following the addressing through Wishbone bus will be referred to by symbolic reference. 

http://en.wikipedia.org/wiki/Central_processing_unit�
http://en.wikipedia.org/wiki/Random_access_memory�
http://en.wikipedia.org/wiki/Read-only_memory�
http://en.wikipedia.org/wiki/Input/output�
http://en.wikipedia.org/wiki/Interrupt�
http://en.wikipedia.org/wiki/Timer�


2.0  System Summary 
 

User’s Manual  Page 16 / 2.2-16 

About high speed receiver it is worth to notice that rear to the dedicated hardware there is logic blocks to 
handle the coming data flux to the data collector and then to the storage in DDR3 memory. During the 
design, this part, in charge of overseeing the data-flux to the collector, was referred to as receiver-buffer, 
that is how it will be indicated also in the following. 

2.2 Receiver Buffer 
Since an high speed receiver get data this module (one for each high speed receiver) packs data in fixed 
length records of 512 bits, that is to say 64 Bytes. The records are written in a cache, that is a FIFO 
memory of 64KB (organized in 1024x64B namely with 1024 locations of 64B width). At the same time 
the receiver buffer counts how many bytes of received data it has written in the cache. Moreover, agreed 
that data comes from events, there will be a trailer marker to spotlight the conclusion of each single event 
(understandably called End of Event). This buffer also registers the number of received End of Event. 

Communication between the Receiver Buffer and the DUT takes place by four signals, a typical 
waveform is depicted in Figure 7: 

• Front End Clock, denoted by CLKWR (elsewhere by FE_CLK); 

• Input Data Bus, denoted by DIN; 

• Write Enable of Input Data, denoted by WR; 

• End Of Event input denoted by EOE. 

In Figure 7, a snapshot of waveforms for the above mentioned signals shows a bunch of eight data, 
considered in three different cases indicated by the letters A, B and C respectively: 

A. In this first case, the Receiver Buffer realizes that two events are contiguous by the halfway End 
Of Event signal and it interprets the coincident data (the fourth, simultaneous with EOE) as the 
last data in the first event. Therefore both events contain four data each. 

B. In this second case, both EOE and the WR signal are de-asserted at the same time. The Receiver 
Buffer store the last data in coincidence with the EOE and it correctly stops to acquire other data, 
whether or not signals on DIN bus changes.  Indeed Write Enable (WR) is de-asserted.  
The single event contains eight data. 

C. The last case does not really differs from previous case in behaviour of the Receiver Buffer, again 
eight data are interpreted as a single event and treated accordingly. 

 
Figure 7: waveforms signals between receiver buffer and DUT 

Under certain conditions the receiver asserts a request to be read by the Data Collector (reading request). 
For the sake of clarity, Data Collector is asked to read data and it will perform the reading as soon as it 
can, which is to say, instantly whether Data Collector is not still busy with a previous reading or afterward 
it becomes not busy. In any case, the receiver buffer tries caching data in the FIFO as it gets data, 
except that overflow1

                                                      
1 Which is to say an overrunning of memory's boundary with overwriting of adjacent memory locations. 

 occur. 



2.0  System Summary 
 

User’s Manual  Page 17 / 2.2-17 

2.2.1 Reading request and latency of packets in receiver buffer 
First and foremost, conditions under which the receiver buffer asserted reading request, depends on user 
settings of latency. Basically a reading request is asserted on four conditions: 

• if half of the memory storage of FIFO is filled up; 

• if, despite a previous request at half memory full, an overflow occurs; 

• if the Run is closed; 

• if timeout is elapsed, under latency settings of a fixed value for timeout; 

• At every End of Event, if this is possible and under “zero latency” settings. 

As presumable, the first three cases are independent of latency mode. In fact under these circumstances a 
reading request is always asserted, disregarding current latency mode.  Instead, about the two last 
conditions, please notice that the receiver buffer works differently according with data packet latency 
settings. Leaving aside for the moment how to set latency mode (Wishbone bus, IP bus and dedicated 
software routines are described in following Sections), users can choose among the following three: 

• zero latency mode; 

• timeout mode; 

• infinite latency mode. 

As first possibility, latency mode equal zero means that the receiver buffer sends a reading request to the 
data collector as soon as it receives the trailing signal End of Event. Please note: this does not entail that, 
in the buffer to be read, is contained neither an entire event nor an event alone. 

In second instance, a timeout value can be set by the user, so as to, the currently stored data should be sent 
to the data collector at the moment of timeout elapsing. 

In the last mode (infinite latency), receiver buffer will ask to read data content, principally when half of 
its storage memory capability is filled up. 

It is worth to notice that, in any case and regardless the latency mode setting, a request for reading is sent 
afterward the storage memory become half full, without concern of UN-completed events. This has been 
provided as protection against dangerous overflowing of receiver buffer and consequent loss of data. 

Clearly, the last two latency modes can be employed by the user in order to pack together several events, 
taking into account that the receiver buffer disregards the fact that the packet would contain also portions 
of events. Actually we can always expect that there will be events not completed, in the first part as well 
as in the tail of the data packet. 

As an effect of reading request the Data Collector will load the content of FIFO cache memory, organize 
and store the packet in the DDR3 waiting for the transmission. Anyway the Data Collector cannot 
generally perform the loading as soon as the receiver ask for that, for instance because it is already busy 
reading from another receiver. And at the same time the receiver buffer keeps to cache data in the FIFO 
whether or not its reading request is being satisfied. 

Clearly an overflow occurs if there is a record to be written in FIFO while this is full. That can happens 
under conditions of high data rate (with respect to output throughput) and it will cause a loss of data and a 
corrupted packaging. Indeed that circumstance cause the receiver to stop collecting data and to generate a 
request to the Data Collector for being read as soon as it can (namely as soon as the latter is not busy with 
previous reading). This and other occurrences have to be indicated by flags. Moreover the packaging has 
to report the total number of data and the number of completed events in its content. 



2.0  System Summary 
 

User’s Manual  Page 18 / 2.2-18 

2.2.2 The header of packets from receiver buffer 
Therefore at the beginning of the packet there is an header of 64B. The header is structured as follows:  
the first (most significant) 13 words to indicate channel, namely which receiver data come from, and other 
three words (3x32 = 96 bits) where to store information pertinent to that specific channel. 
Such header arrangement is depicted in [Table 8]; here following some explanation about its meaning. 

As we said the first field report which channel, namely which receiver, sent the data stored in the packet. 
Channel info employs 13 words equal to 60 Bytes equal to the 416 most significant bits of the header. 

Beside there is another field of three words which is denoted BLOCK INFO. As one can presume, there 
are stored, packet concerning main information, that is: how many data and event tail the packet contains 
and the reason why reading request was asserted. 

In detail within BLOCK INFO, the first word (4 bytes) contains the number only of event tail, contained 
in the same packet. The first field reports the amount of End of Event occurred during the collection of 
the packet, which can differ from the number of events. Indeed, admitted value can be zero in the 
meaning that the current packet contains only a fraction of one entire event. Moreover up to two 
fragments can be within the packet wrapped (leading and trailing) complete events. 

The second word is the Flags field as depicted in Table 9.  Indeed it mainly consists of four bit registers 
which are high in case the transmitted packet has been subjected to one of four conditions: 

1. the LSB, namely bit[0], is high to indicate that the packet sent finished with an End Of Event; 

2. the next more significant bit[1] indicates that an overflow occurs upon FIFO cache memory 
writing, as above explained; 

3. the third register, if high, means that current packet has been sent afterwards an elapsed timeout; 

4. last fourth bit is set high when the same referring packet is sent in concurrency with a stop of the 
running, namely cause running signal has been de-asserted. 

2.2.3 Size of data packet for transmission: the role of Data Collector 
When the packet is stored in FIFO, Receiver Buffer assert a reading request and the Data Collector comes 
in charge of loading the data from FIFO. As we noticed the width of FIFO is fixed (64B), disregarding the 
amount of bytes contained in a single packet and stated in the third field of BLOCK INFO. That can 
imply that Data Collector will fill the tail of the packets with sequence of zero, up to have a packet 
structured in multiple of 64B and long enough to be sent complying with protocol requirement. 

2.2.4 Remarks about Flags 
Concerning flags of BLOCK INFO it is worth to notice that in some case the packet will be sent with any 
flag high, namely in the case of a reading request due to half memory filled up. Under second condition, 
in case of Overflow, the appropriate flag is set high (@bit 33). At last in a third case, as consequence of 
closing a run, the End of Run flag is set high (@bit 35). As example, considering a packet with any flag 
high (namely all BLOCK INFO flags field set to zero), user can realize that reading request has been 
asserted as consequence of FIFO half full and the tail of the packet contain an incomplete event. 

Finally please observe that above described circumstances, as reported by flags, can be concurrent hence 
more than one flag can be high in the same packet meaning that all reported circumstances had occurred. 
For instance we can have a packet ending with a complete event (first flag @bit 32) which has been sent 
cause of a timeout and/or an overflow both occurred during package of data, therefore we will have also 
pertinent flags set high (third flag @bit 34 and/or second flag @bit 33). The Flag content will be 0111 in 
that first case of packet finishing with complete event and sent cause of timeout and overflow or, as 
another instance, flags would be 0101 in case again of a packet again finishing with complete event but 
sent cause timeout and not overflow. 



2.0  System Summary 
 

User’s Manual  Page 19 / 2.3-19 

 

Address in Byte 

63            16 15         12 11           8 7            4 3            0 

RESERVED 
12 words = 48 Bytes 

CHANNEL INFO 
(1 word = 4 Bytes) 

BLOCK INFO 
(3 words = 12 Bytes) 

  
End of Event 

counter 
(4 Bytes) 

Flags 
(4 Bytes) 

Size in Byte 
(4 Bytes) 

Table 8: Header protocol for packaged data from Receiver Buffer. 

 
Address in bit (within the Flags field) 

31                              4 3 2 1 0 
 

FLAGS 
(4 Bytes = 32 Bits) 

Reserved - zero filled 
(28 bits) 

End of Run 
(1 bit) 

Timeout 
(1 bit) 

Overflow 
(1 bit) 

Closed event 
(1 bit) 

Table 9: format of FLAGS field in the header. 

 
 
 
 
 
2.3 Addressing Wishbone Bus 
WISHBONE is a flexible System-on-Chip (SoC) design methodology. WISHBONE establishes common 
interface standards for data exchange between modules within an integrated circuit chip. Its purpose is to 
foster design reuse, portability and reliability of SoC designs. WISHBONE is a public domain standard. 

Please notice that in MOSAIC the standard is restricted at fixed 32-bit data port with BIT granularity 
(width of 32 bits with NOT-allowed partial writing or reading). In other words MOSAIC uses a 32 bit 
specification of WBB bus, namely with 32 bit width for both data and addressing. Also due to this 
specification, some of the signals in the WISHBONE standard are optional in the standard and here not 
necessary therefore not present on this specific interface. 

Beside what concerning Pulser, Data Generator and Trigger Control described in Sections 2.5, 2.6 and 
2.7, the present section report the offset addresses of other useful blocks interconnected within MOSAIC 
by Wishbone bus, in detail the Controller of I2C, the Run Controller and the pAlpide Control Interface. 

The address space for the Wishbone bus is structured in two fields in such a way that address is done by 
the sum of Base Address to address the specific block and Relative Address (offset) to address single 
registers within that selected sub-system. A list of Base addresses is reported in the following Table 20, 
while for every module is provided a dedicated table with offset reference. 

Please note that numeric values for addressing can differ in final release (not the symbolic reference to) as 
a matter of fact the running arrangement is established in the package file mapping.pkg for the base 
addresses and in dedicated package files for the relative part (offset). Therefore the absolute addresses 
(which is to say the numeric values) have to be modified from there. 

Finally, for specification and more details about writing reading and addressing Wishbone Bus please 
refer to the Wishbone Bus protocol documentation at reference item [9] at page 1-13. 

 



2.0  System Summary 
 

User’s Manual  Page 20 / 2.3-20 

 

I2C Controller: registers mapping 

Address name register function Note 

 

ADD_SHIFT_OUT A 32-bit R&W register for data 
output and to control operations see fields 

Fields within SHIFT_OUT 

STOP 1-bit to command a stop to I2C slave bit[31] 

START 1-bit to command a start to I2C slave bit[30] 

MASTER_ACK 1-bit for the acknowledge from Master bit[29] 

IGNORE_ACK 1-bit to ignore Master acknowledge bit[28] 

dummy 20 bits to fit SHIFT_OUT to bus width to fit 32 bits 

DATA_OUT A 8 bit R&W register for data output bit[7:0] 

ADD_SHIFT_IN An 8-bit read only register for 
reading data back 

 

ADD_PAR_IN An 32-bit read only register for 
reading parallel inputs  

N.B.: absolute addressing can differ in final release. The current arrangement is stated by the proper 
package file (i2c_master.pkg) and it has to be be modified from there. 

Table 10: mapping of I2C controller 

 
 
 
 
 
 



2.0  System Summary 
 

User’s Manual  Page 21 / 2.3-21 

 

Run Controller registers mapping 

Address name register function Note 

 
ADD_RUN_CTR A 2-bit R&W register to  

control starting of Run 
two fields 
single bit 

Single bit fields within Run Control register, namely RUN_CTR bits 

RUN 1-bit register to start running bit[0] 
zero by default 

PAUSE 1-bit register to pause running 
bit[1] 

zero by default 

ADD_ERROR_STATE A 32-bit R&W register for  
storing the error state  

ADD_ALMOST_FULL_THRESHOLD 
A 32-bit R&W register for current 
value of Threshold of almost full 
flag for the ddr3 memory buffer 

 

ADD_LATENCY A 32 bit R&W register for  
control Data Latency 

bits UNUSED 
see fields  

fields within Latency register 

MODE 2-bit field to latency mode setting 
bit[31:30] 

zero by default 

TIMEOUT 24-bit register for the TIMEOUT value 
ONLY bit[23:0] 
UNUSED [29:24] 

enumerator for setting Latency Mode in previous register, namely in MODE reg. 

latModeEOE 
Send reading request on End Of Event; 
namely zero latency mode default mode 

latModeTimeout 
Send reading request on timeout 
elapsing; namely timeout mode  

latModeMemory Send reading request on half memory 
filled; namely infinite latency mode 

 

ADD_TEMPERATURE NOT IMPLEMENTED; future development 
FGPA internal temperature 

DO NOT USE 
not working 

ADD_RESERVED_0 
NOT IMPLEMENTED  
reserved 0 (first) 

DO NOT USE 
not working 

ADD_RESERVED_1 NOT IMPLEMENTED  
reserved 1 (second) 

DO NOT USE 
not working 

ADD_RESERVED_2 
NOT IMPLEMENTED  
reserved 2 (third) 

DO NOT USE 
not working 

ADD_CFG A 32 bit R&W register for  
the configuration setting 

 

fields within Configuration register, namely in CFG reg, for clock setting 

CFG_EXTCLOCK_SEL_BIT reg. to Enable external clock bit[0] 

CFG_CLOCK_20MHZ_BIT to switch clock from 40 to 20 MHz bit[1] 

N.B.: absolute addressing can differ in final release. The current arrangement is stated by the proper 
package file (run_control.pkg) and can be modified from there. 

Table 11: mapping of Run Controller 



2.0  System Summary 
 

User’s Manual  Page 22 / 2.3-22 

 

pAlpide Control Interface: registers mapping 
Address name register function Note 

 
ADD_WRITE_CTRL A 32-bit R&W register to  

control writing operations see fields below 

Fields within WRITE_CTRL 

opcode 8-bit reg for the current value of 
Operation Code 

bit[31:24] 
see list below 

chipID 8-bit reg for the current value of 
Chip ID 

bit[23:16] 

regAddr 
16-bit reg for the current value of 
address where to write bit[15:0] 

List of Operation Codes, enumerator for opcode field of Write Control Register above 

OPCODE_STROBE_2 Trigger  

OPCODE_GRST command a Chip Global Reset  

OPCODE_RORST command a Readout Reset  

OPCODE_PRST command a Pixel matrix reset  

OPCODE_STROBE_6 Trigger  

OPCODE_BCRST command Bunch Counter Reset  

OPCODE_ECRST command Event Counter Reset  

OPCODE_PULSE Calibration Pulse  trigger  

OPCODE_STROBE_10 Trigger  

OPCODE_RSVD1 Reserved for future development  

OPCODE_RSVD2 Reserved for future development  

OPCODE_WROP 
command a Start Write 
Unicast or Multicast Operation  

OPCODE_STROBE_14 Trigger  

OPCODE_RDOP command a Start Unicast Read  

ADD_WRITE_DATA A 16-bit reg for data to write  

ADD_READ_DATA A 16-bit register for read data  

Fields within READ_DATA 

syncOK 
1-bit to acknowledge that  
input data are correctly synchronized 
with Front End clock 

bit[27] 

ChipID_OK 1-bit to acknowledge that  
Chip ID is received in good order 

bit[26] 

DataL_OK 1-bit to acknowledge that Read Data Low 
Byte is received in good order 

bit[25] 

DataH_OK 
1-bit to acknowledge that Read Data 
High Byte is received in good order bit[24] 

rdChipId An 8 bit reg for read value of chip ID bit[23:16] 

rdData A 16 bit reg for read value of Data bit[15:0] 

ADD_DATA_PHASE A 3-bit read only register for the 
input data phase respect to FE_CLK  

N.B.: absolute addressing and enumerated values can differ in various releases. The running arrangement 
must be modified always by editing the proper package file, in this case control interface.pkg 

 
Table 12: mapping of pAlpide Control Interface 



2.0  System Summary 
 

User’s Manual  Page 23 / 2.5-23 

2.4 Front-End and Modes of Operation 

Control line interface

Trigger logic

Module under test

WishboneBus

RUN  & enable

Pulse logic

Pulse Delay

Trigger Delay

Mode of operation

Number of pulses

Trigger

Front End block diagram

Pulse

Data
Generator

 
Figure 8: block diagram of Front-End. 

The diagram in Figure 8 above, illustrates the organization of the front end logic. Among other blocks, it 
is worth to notice that the system also implements (inside the FPGA) a generator of data as sequential 
numbers and a pulser, provided for testing connectivity respectively to external PC and DUT. Previously 
we gave some details about how to address single blocks in MOSAIC, through Wishbone bus. The 
performances relating to those data generator and pulser are subject of the following sections. 

2.5 Pulser 
As said before, the MOSAIC system provide generation of pulses and trigger. Three (3) different mode of 
operation are provided: 

• only Pulse; 

• only Trigger; 

• Pulse and Trigger (default mode). 

The desired values for number of pulses, trigger delay and pulse delay are written through Wishbone bus 
at different addresses enumerated by symbolic names in Table 13. Please note that absolute addressing 
can differ in final release, as a matter of fact the running arrangement is established in the proper package 
file named pulser.pkg and can be modified from there. 

Every subsequent overwriting/update of those values stops the execution of that batch of N pulse and 
starts another one from the beginning, with current (which is to say at that moment) values of delays and 
number of pulses. This restart occurs at the timing set for trigger generation, namely after internal trigger 
is generated (if enabled) or at the moment when it should be (if not enabled). 



2.0  System Summary 
 

User’s Manual  Page 24 / 2.5-24 

2.5.1 How to set different operation modes for pulsing 
There are different modes of operations controlled by enable registers. Those are single bit fields within 
the register for operation mode. For the sake of completeness we report here that this register is named 
opMode_wbb, but this is redundant due to the fact that the same register can be addressed, through 
Wishbone bus, by the symbolic reference ADD_MODE. Moreover, as we will see later in the following 
Section 4.1, software routines are provided in order to spare users from addressing Wishbone bus. 

In detail enabling registers are: 
• enable_pls for enabling pulse, which is to say generate a pulse at due timing; 
• enable_trg for enabling trigger, namely generate internally a trigger at due timing. 

 

2.5.2 Trigger and Pulse Delay 
The following Figure 9 shows the timing of both internally generated trigger at set timing after pulse and 
pulse at set timing after generated trigger. 

Value for the trigger delay has to be written in unit of Front-End clock period (FE_CLK in the following), 
addressing Wishbone bus at ADD_TRIGGER_DELAY. Default value is zero. 

Value for the pulse delay has to be written in unit of Front-End clock period (FE_CLK in the following), 
addressing Wishbone bus at ADD_PULSE_DELAY. Default value is zero. 

In conclusion the time interval between subsequent pulses is the sum of the two set delay values, 
namely pulse delay plus trigger delay

2.5.3 Number of pulses and general cautions 

. 

The desired value for the number of pulses in a bunch has to be written addressing Wishbone bus at 
ADD_PROG_NUMPULSES. Since default value is zero, the generation of pulse does not start at all, as well 
as in the case that set value is zero. 

On the contrary, the combination of RUN signal and ON flag asserted, commands to sample the number 
of pulses and to store the current value in a register clocked at (synchronized with) FE_CLK. 

At last there is a 32 bit read only register for the current number of pulses sent to the DUT, therefore that 
amount can by monitored addressing Wishbone bus at ADD_STATUS_BAR reference. 

Please notice that it is mandatory to supply the set values written in the input registers before the strobe 
signal on the Wishbone bus. At last, users can overlook this caution using the IP bus transactor or the 
software routines we will described later, in the Section 4.1. 

Figure 9: a snapshot of waveform illustrates timing of pulses and delay in the pulser. 



2.0  System Summary 
 

User’s Manual  Page 25 / 2.6-25 

 

Pulser registers mapping 
Address name register function Note 

 
ADD_MODE 

A 2-bit R&W reg. for setting of 
operation mode (opMode_wbb) 

Pulse and Trigger 
enabled by default 

ADD_TRIGGER_DELAY 

A 16 bit R&W reg. where to 
store program value for the 
delay between pulse and 
following trigger 

zero by default 

ADD_PULSE_DELAY 

A 32 bit R&W reg. where to 
store program value for the 
delay between trigger and 
following pulse 

zero by default 

ADD_PROG_NUMPULSES 
A 32 bit R&W reg. where to 
store program value for the 
number of pulses 

zero by default 

generation does NOT 
start if this is zero 

ADD_STATUS_BAR 
A 32 bit Read only reg. to 
monitor the current number of 
pulses already sent to the DUT 

 

fields in operation mode register, namely opMode_wbb 

enable_pls field in MODE register for 
Enabling Pulse output 

bit[0] 
high by default 

enable_trg field in MODE register for 
Enabling Trigger output 

bit[1] 
high by default 

N.B.: absolute addressing can differ in final release.  
The current arrangement is stated by the proper package file (pulser.pkg) and can be modified from there. 

Table 13: Mapping of Pulser registers 

2.6 Data generator 
As said, the MOSAIC system provides a generator of data sample which will be composed by sequential 
numbers and that can be useful to test communication with external and during the developing of control 
software.  The reference clock for the generation of data, it is that of Wishbone bus. 

The sample generated is user-adjustable in terms of: 

• Event size, namely the number of data inside a single event/bunch/sample; 

• Event delay between subsequent bunches. 

The desired values for number of data and delay are written through Wishbone Bus at different addresses. 
Thereafter, user can start generation by asserting the specific signal (switching ON). 

De-asserting the same signal will provoke a stop in the data generation. Please notice that Stop does not 
imply abort. To the contrary, the module will finish generation of the current packet and it will wait the 
set delay before to check the enable status in order to decide whether to generate a next event or to stop 
generation permanently. 



2.0  System Summary 
 

User’s Manual  Page 26 / 2.6-26 

Besides, every subsequent overwriting/update of those values does not stop the generation of that sample 
and the start of another occurs after the current has been completed according with updated values of 
event size and delays between packets. Furthermore set value for event delay is up-loaded at the end of 
event generation, therefore please avoid to update event delay during the generation

Therefore it is not guarantee that data from subsequent bunches were sequentially ordered as supposed. 
Moreover in case of an overflowing of the receiver buffer, the internal storing can be truncated 
disregarding generation of data. Hence there can be following data that are not sequential to the previous 
data, even within the same bunch and therefore in a single transferred packet too. 

 until the end of 
the current event. 

2.6.1 How to set Data Generator 
Symbolic names for addressing the above mentioned registers (for Data Generator main parameters)  
are summarized and listed in Table 14. Please note that absolute addressing can differ in final release,  
as a matter of fact the running arrangement is established in the proper package file, in the present case it 
is named generator.pkg, and it has to be modified from there. 

Data Generator registers mapping 

Address name register function Note 

 
ADD_MODEON 

modeOnReg: A 2-bit R&W register 
to control starting of generation 

zero by default 

MODE reg. is unused 

ADD_EVSIZE EV_SIZE: A 22 bit R&W register 
for program value of event size 

number of data in 
each single event 

zero by default 

ADD_EVDLY EV_DELAY: A 32 bit R&W register 
for program value of event delay 

delay between two 
subsequent events  

zero by default 

bits within operation Mode and ON register, namely modeOnReg 

ON 1-bit register to enable generation 
bit[0]; 

zero by default 

MODE 1-bit register for future development 
UNUSED bit[1]; 
zero by default 

N.B.: absolute addressing can differ in final release.  
The current arrangement is stated by its package file (generator.pkg) and can be modified from there. 

Table 14: Mapping of Data Generator registers 

In conclusion, there are three different registers that can be set through the Wishbone bus: 

1. MODE (un-used) and ON register, addressed by the symbolic reference ADD_MODEON; 

2. Event size, addressed by ADD_EVSIZE. Default value is zero; 

3. Event delay, addressed by ADD_EVDLY. Default value is zero. 

Again as we have seen in the case of the Pulser block, users can access registers also by IP bus transactor 
or overlook those particulars using software routines we will described later at following Section 4.1. 



2.0  System Summary 
 

User’s Manual  Page 27 / 2.7-27 

2.7 Trigger Control Unit 
The present module is in charge for: 

a. enabling an external trigger; 

b. read number of received triggers on a 32 bits counter; 

c. read the time interval passed by the first trigger on a 64 bits timer. 

At the moment (July 2015) it is still under development a class which implements functions for the 
previous purposes. Hence, the module has to be accessed by Wishbone bus or through IP bus transactor, 
as every other parts can always be dealt with. In this framework, the pertinent registers in the Trigger 
Control Unit are illustrated in the following Table 15. Among others, it has been defined a symbolic 
reference (EN_EXT_TRG) to the configuration register in charge for the enabling of external trigger; that 
can be useful later during programming. Please notice that counters are reset by asserting of Run signal. 

TRIGGER CONTROLLER UNIT:  TriggerControl 

Address name register function Note 

 
ADD_CFG A 16-bit configuration register see field below 

EN_EXT_TRG 1-bit register field of ADD_CFG 
for enabling external trigger   

ADD_TRIGGER_CTR A 16-bit read only register for 
the current amount of triggers 

Reset by RUN signal 

ADD_TIME_L 

A 16-bit read only register for 
Least Significant Bits of a TIMER 
which counts the time elapsed 
starting from the first trigger 

bits 31:0 of TIMER 

Reset by RUN signal 

ADD_TIME_H 

A 16-bit read only register for 
Most Significant Bits of a TIMER 
which counts the time elapsed 
starting from the first trigger 

bits 63:32 of TIMER 

Reset by RUN signal 

 
Table 15: Mapping of registers in Trigger Controller Unit. 

2.7.1 Enable external trigger 
External signals are synchronized to the Front End Clock Domain through a two stage DFFs pipeline and 
shaped at one FE clock duration. At this stage, if external trigger is enabled (directly addressing the 
ADD_CFG or by the EN_EXT_TRG reference) the above-said shaped signal is send to TRIGGER output. 

Besides, if requested by the corresponding enable bit, the shaped signal from external trigger is added 
with the internal trigger signal generated by the Pulser as previously seen (in OR). Otherwise the first 
mentioned goes alone. 

Notice: correlation timing is not granted for the external trigger, in the mean that the exact delay above-
mentioned is set only for the internal trigger. A priori the external one is therefore uncorrelated with 
respect to pulse, unless you make that from outside and under the only condition of cycle duration and 
synchronicity with FE clk. 



2.0  System Summary 
 

User’s Manual  Page 28 / 2.9-28 

2.8 Function and Data Flows 
While command to different blocks are sent through and by the Wishbone Bus, user does not really need 
to access to that. Instead, the MOSAIC system provide an IPbus transactor therefore control of operations 
can be done externally by means of IPbus control packets going from a software (UDP) client to the 
hardware target. The complete software client is still under development while at the moment the CAD 
service INFN Bari has already developed software routines for the direct generation of above described 
IPbus control packets. Those routines are described in a separate documentation file (produced by 
Doxygen as referred in following Section 4.1). 

2.9 IP bus control packet 
As we said MOSAIC system provide an IP Bus transactor for the communication from/to external 
through an Ethernet connection, namely a simple, IP-based protocol for controlling internal hardware. 

In effect MOSAIC is furnished of an internal bus with 32-bit data transfer and 32-bit word addressing , 
i.e. allowing up to 234 bytes to be addressed. By the way please notice that it is word addressable not bit 
addressable. The choice of 32-bit widths is fixed in this protocol, though the target host is free to ignore 
address or data lines if desired. 

An IPbus packet consists of a set of transactions, that is to say requests and responses, between the user 
and one or more target devices (for controlling devices on a virtual bus). Here immediately below the 
very basic terminology to understand the following: 

1. IPbus transaction, an individual IPbus request or response, e.g. a block read request. 

2. IPbus packet, one or more individual IPbus transactions that are concatenated together to form the 
payload of the transport protocol. 

3. IPbus client, the software client that generates IPbus transaction requests to control an IPbus host 
device. 

4. IPbus host, the (hardware) device that responds to – and is controlled by – IPbus transaction 
requests from an IPbus client. 

5. Transport protocol, the protocol responsible for transporting the IPbus packet to/from the 
client/host, e.g. the User Datagram Protocol (UDP). 

The IPbus specific information is contained within the payload of the UDP packet, which in turn is 
wrapped within an IP packet and an Ethernet packet. In an IPbus packet can be queued several IPbus 
transaction requests, each consisting of an IPbus transaction header and its body. The packet returned by 
the hardware target would follow the same format, except that each IPbus transaction request would be 
exchanged for the relevant response format. 

Since an IPbus packet consists of a set of transactions, in order to improve transport efficiency, IPbus 
transactions can be concatenated together as necessary. The recommended transport is UDP. Therefore, 
each transaction or set of transactions must fit into a single UDP packet.  

Note that the maximum size of a standard Ethernet packet is 1500 bytes; with an IP header of 20 bytes 
and a UDP header of 8 bytes, this gives the maximum IPbus packet size of 368 x 32-bit words, or 1472 
bytes. In fact the IPbus protocol does not support fragmentation, hence the maximum block size is the 
same as the Ethernet. 

The specifications to be employed for MOSAIC system, concerning IPbus packet header, IPbus 
transaction header, and the format of possible IPbus request and response, are detailed in the following 
sections 2.9.1, 2.9.2 and 2.9.3. For more general details about IPbus packet header, IPbus transaction 
header, and the format of possible IPbus request/response please refer to the IPbus protocol specification 
document at reference item [1] at page 1-13. 



2.0  System Summary 
 

User’s Manual  Page 29 / 2.9-29 

2.9.1 IPbus Header 
Each IPbus v1.4 transaction must start with a 32-bit header of the following format. There is no overall 
header, however each individual IPbus transaction within the packet has its own header. The number of 
transactions in a given UDP packet must be deduced from the length of the packet and its content. Each 
IPbus transaction carries a 32-bit header which content describes the particular transaction 
request/response according to a standard format described in the following Table 16. 

IPbus v1.4 : 32-bit header format 
address in bit 
31            28 27                                                         16 15                                     8 7                 4 3                 0 

Protocol 
Version 
(4 bits) 

Words 
(12 bits) 

Transaction ID 
(8 bits) 

Type ID 
(4 bits) 

Info Code 
(4 bits) 

Table 16: IPbus header format 

The definition and meaning for the above fields are following in Table 17 

Protocol Version 
first four bits (MSB 31 - 28) 

Protocol version field. Although actual version of protocol is the 1.4, 
this field must be 

 
set to 2 

Words 
next twelve bits (bits 27 - 16) 

Number of 32-bit words that are interacted with (written/altered/read) 
within the addressable memory space of the bus 

Defines read/write depth of blocks to be read/written 
 
Transaction ID 
eight bits (bits 15 - 8) Transaction identification number, client could track each transaction 

 
Type ID 
four bits at (7 - 4) Defines the request/response type of the IPbus transaction 

 
Info Code 
last four bits (LSB 3 - 0) Defines the direction and error state of the transaction request/response 

 
*   see the following section Transaction Types for the different ID codes 
** see the following section Info Codes for the different codes 

Table 17:  definition and meaning of header fields 

2.9.2 IPbus Info Codes 
Within the IPbus header, the field named Info Code consists of 4 bits which encode direction and error 
state for the transaction. All allowed code are listed in Table 18 while main purposes are summarized: 

a. All requests (for instance client to host) must have an Info Code of 0xf; in effect this is the only 
code allowed for requests; 

b. Requests which are successfully served by the host have, in the response, an Info Code of 0x0; 

c. All other values are response error codes that detail how a request failed to be served by the host.  

Please notice that some of Info Codes are reserved and have neither useful nor specified meaning in the 
present version of the protocol. 



2.0  System Summary 
 

User’s Manual  Page 30 / 2.9-30 

Info Code Direction Meaning 

0x0 Response Request handled successfully by host 

0x1 Response Bad header 

0x2 Response Bus error on read 

0x3 Response Bus error on write 

0x4 Response Bus timeout on read 

0x5 Response Bus timeout on write 

0x6 Response Overflow of the Buffer 

0x7 Response Underflow of the Buffer 

0x8 not applicable Reserved 

0x9 not applicable Reserved 

0xa not applicable Reserved 

0xb not applicable Reserved 

0xc not applicable Reserved 

0xd not applicable Reserved 

0xe not applicable Reserved 

0xf Request Outbound request 

Table 18: Info Codes for IPbus header. 

2.9.3 IPbus Transaction Types 
All transactions have a specific 32-bit IPbus header and some can have a payload. Possible transactions 
types (either request or response) are identified by a specific code referred to as Transaction Type. The 
Transaction Type is a 12-bit field in the IPbus header that encodes the direction of a transaction and its 
error status. Identifying codes and their description are listed in following Table 19.  

Transaction Types Type ID 

Byte-order/Idle Transaction  0xf 
Read Transaction  0x0 
Non-incrementing Read Transaction  0x2 
Write Transaction  0x1 
Non-incrementing Write Transaction  0x3 
Read/Modify/Write Bits (RMWbits) Transaction  0x4 
Read/Modify/Write Sum (RMWsum) Transaction  0x5 
Get Reserved Address Information Transaction  0xe 

Table 19: IP bus Transaction Types 

 



2.0  System Summary 
 

User’s Manual  Page 31 / 2.9-31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0 GETTING STARTED 
 



3.0  Getting Started 
 

User’s Manual  Page 1 / 3-1 

3 GETTING STARTED 
This section provides a first walkthrough MOSAIC setup from initialization to a starting test of 
functionality of the system.  Assuming that you have already installed the board in a crate and 
plugged all cables needed for your specific setup, first thing you need is to set network 
connection for communications with the MOSAIC system. 

3.1 IP address configuration 
The mosaic board has a network IP address stored inside a EEPROM. It can be changed using 
the following procedure. 

On a Linux workstation connected on the same LAN where is connected the mosaic board, start 
the configuration server utility: 

cfgsrv IP_start_address [mask] 

e.g.: 

$ ./cfgsrv 192.168.168.250 

Or, if the network mask has to be different from default 255.255.255.0:   

$ ./cfgsrv 192.168.168.250 255.255.0.0 

During the configuration user will be requested to press the push button for one second. Then the 
CPU LED (part n.13 in Figure 1) starts to flash at higher rate, specifically 0.1s on / 0.1s off. 
During that time the board sends a broadcast request and the server responds with the new IP 
address and mask. As the board receives the configuration data, the CPU LED lights for 2 s 
before to return to the normal operation blinking mode. 

The configuration utility reports the MAC address of the board requesting configuration data and 
the IP address assigned: 

Mosaic IP configuration server 

Received Request from MAC address: fc:d4:f2:0c:0a:6e  

Assigned address 192.168.168.250 mask 255.255.255.0 

Since the handshake is done using broadcast UDP messages, the computer has to be able to 
receive messages on UDP port 10067 and send messages on UDP port 10068. If the machine has 
an active firewall, configure it to open these ports or temporary disable it. Similarly the presence 
of a switch in between can hinder a proper connection. In that occurrence, in order to prevent 
erroneous filtering, you can connect the MOSAIC board directly to the Ethernet port on the PC. 

Moreover some configuration of SELinux (Security Enhancement to Linux) inhibit configuration 
utility to be properly executed. In that case please use the dedicated version of the same tool 
under Windows ®Microsoft. 



3.0  Getting Started 
 

User’s Manual  Page 2 / 3-2 

3.2 Firmware upgrade 
As we said MOSAIC is based on a programmable logic component, namely an FPGA. Hence at 
startup, MOSAIC board loads its firmware configuration from an EEPROM (a FLASH). 

In particular, the flash memory on the MOSAIC board stores two firmware, so called: the 
working and the “golden” images.  For the sake of clarity the current version of the firmware, 
namely the firmware that will be loaded and used for normal operation of the FPGA is referred 
to as the working image. Instead the golden image is a minimal version of the firmware needed 
just for a minimal startup and the loading of the working image. 

The golden image is loaded if the loading of the main working image fails for any reason. 

Considering what we have said about firmware, MOSAIC has been provided with a software 
utility, named artix_fw and dedicated to upgrade the onboard FPGA firmware. 

To upload a new firmware: 

$ ./artix_fw –file work_image.bin 192.168.168.250 

It can also read the current firmware version using the command: 

$ ./artix_fw 192.168.168.250 

As response the software will display information like the following example: 

BOARD INFO 

Firmware version: 1.1 

Flash ID: 0x20 (Manufacturer), 0xba (Type),0x19 (Capacity) 

Flash Status Register: 0x00 

 

Software Identity: 05/02/2015  9.13.11,90 

Firmware Identity: pALPIDE-2 11/02/2015 14:30 

Please notice that in order to provide a good protection against programming interruption and 
error the firmware is update following a secure procedure. In practice: the boot record into the 
flash is switched to force the loading of the golden image, before to erase the working image. 
After a correct programming of the working image, the boot record is restored to enable the 
loading of the new firmware. 

3.3 Network considerations 
Communication between MOSAIC board and an external controlling PC take place under 
Transmission Control Protocol (TCP), which provides host-to-host connectivity at the Transport 
Layer of the Internet model. Generally, over most of the Internet, default value for the Maximum 
Segment Size (MSS in the following) is limited to a 1460-byte packet, the largest allowed by 
Ethernet at the network layer. 



3.0  Getting Started 
 

User’s Manual  Page 3 / 3-3 

As we know, a larger MSS brings greater efficiency, first because each network packet carries 
more user data under the same protocol headers and underlying per-packet delays. Besides a 
larger MSS also requires the CPU (internal to MOSAIC) processing of fewer packets for the 
same amount of data. Considering the CPU frequency (around 50 MHz), per-packet-processing 
would have been a critical performance limitation. 

For this reason it is recommended to increase MSS up to 32000 Bytes, applying under Linux, the 
route command as in following: 

ip route add 192.168.168.250 advmss 32000 dev eth0 

Thus, taking the maximum advantage of having implemented MOSAIC Ethernet interface with 
segmentation in hardware, the resulting improvement in bulk protocol throughput means that the 
MOSAIC board can stand a throughput of about 120 MB (Gb Ethernet). 

It is worth to notice that, in some cases, user will need to set the amount of memory available for 
IP reconstruction of fragmented packet, in the kernel of the operating system in use. 

Suggested commands for the purpose are the following: 
echo "1000000" > /proc/sys/net/ipv4/ipfrag_high_thresh 

and for setting the maximum amount of memory available during TCP reception/acceptance: 
echo “16777216” > /proc/sys/net/core/rmem_max 

echo “4096 87380 16777216” > /proc/sys/net/ipv4/tcp_rmem 

Last consideration is that, due to the small size of the network receiving buffer, if the MOSAIC 
card is working in a busy network, where there is a lot of broadcast traffic, packet loss may 
occur.  Therefore it is always advised to connect the MOSAIC card on a private subnet in which 
broadcast traffic is not forwarded. 

3.4 Launch the readout test program 
It is provided a simple readout test software to check basic functionality of the just settled system. 

This Simpl

Basically, the simple readout test program will perform in the order: 

e Read-Out Test program is written in file named simplereadouttest.cpp. 

• Set up in the data generator the rate of generation, having set the delay between two subsequent 
events equals to 800 in Wishbone bus clock period and the event size of each event, namely 
100000 data (32-bit) for a single event; 

• Start the Run; 

• Check that received data match expected values. 

More in detail: 

During operation, please consider that, at the very beginning, the execution of the program will stop the 
current Run in case the system is already running. 

Following procedure, the registers with previous errors are reset while latency time is set to zero, which is 
to say that the latency mode is fixed at End of Event. Moreover, the threshold for DDR3 memory almost 
full is set to 512000 Bytes.  Then the Data Generator is setup with default values for Event Size and Event 
Delay respectively equals to 100000 and 800;  by the way the data rate is fixed accordingly. To follow, a 
TCP connection is established (open) and afterward the Run starts. 



3.0  Getting Started 
 

User’s Manual  Page 4 / 3-4 

The function takes one arguments which is the IP address of the employed MOSAIC board. 

simplereadouttest 192.168.168.250 

If user does not give any argument, the software will display the following message: 

usage: readout <IP address>\n 

After a basic starting of simplereadouttest, namely the software as is, the RUN LED lights up while 
BUSY LED turns off.  After a few seconds, seeing as the data generator writes data in the DDR3 memory 
faster than the reading speed of Ethernet, BUSY LED will begin blinking.  Afterwards, the RUN LED 
switch off and the software ends execution reading entirely memory contents, within 10 seconds the 
DDR3 should be empty. 

After that, if the test is successfully, the strings shown below will be displayed, in order: 

Reading data 

Stopping run 

Skipping data block from unregistered source 

Read 3371772736 bytes in 102699 blocks 

Where "Skipping data block from unregistered source" is negligible for the purposes 
of the present test, due to missing parsing of data from pAlpide readout interface. 

Executing the test program under the linux “time” utility it is possible to evaluate the time spend to move 
the reported amount of data from the board to the PC. Namely after the command: 

time ./simplereadouttest 192.168.168.250 

the strings shown below will be displayed (as in previous case if the test is successfully): 

Reading data 

Stopping run 

Skipping data block from unregistered source 

Read 3371772736 bytes in 102699 blocks 

0.226u 4.041s 0:29.45 14.4%     0+0k 656+0io 5pf+0w 

Otherwise, depending on the specific condition under which the procedure fails, the following error 
messages will be displayed: 

 Error register:___________________ 

At last, please notice that the above information are referred to specified software and hardware release, 
please verify you are working with the following: 

Software Identity: 27/04/2015 13.01.14,61 

Firmware Identity: pALPIDE-2 05/05/2015 12:11 

 



4.0  Using the System 
 

User’s Manual  Page 1 / 3-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0 USING THE SYSTEM 
 



4.0  Using the system 
 

User’s Manual   Page 4-1 

4 USING THE SYSTEM 

As we said MOSAIC system provides an IP Bus transactor for the communication from/to external. 
Software developer should consider how to build IPbus packets for addressing commands to the various 
blocks and which will be transmitted through a Wishbone Bus. More over the user interface software has 
to handle response packet coming back from the various part of the MOSAIC system. 

As we previously said the Address Space through Wishbone bus, is structured in two fields, which can be 
said as BUS ADDRESS = BASE ADD + RELATIVE ADD. The first Field (BASE ADD) consists of the 
high part, namely the more significant 8 bits are used to indicate the target sub-system block. Besides, the 
other 24 less significant bit (RELATIVE ADD) are used to indicate registers for data control and 
functions inside the target device. 

It can be useful to remember that the list of relative addresses (offset) is in and that absolute addressing 
could be different in final release, as a matter of fact the running arrangement is established in the 
package file mapping.pkg and can be modified from there. 

At the moment there are, still under development, few routines intended to allow the user to access 
different blocks and perform basic operation with targeted hardware. Therefore users and developer of 
software interface for MOSAIC can take advantage of classes and headers (undergoing review) written in 
c/c++, in order to exploit facilities of the system without concern Wishbone and IP buses protocol. On the 
other hand, technical specifications of internal architecture are useful to a deep understanding of the 
system and definitely needed for future development. This will be the case for maintenance, upgrading 
and for coding new routines to perform other tasks on MOSAIC board. 

In any case and to be thorough, a list of the blocks as addressable by Wishbone bus, hence through IP bus 
transactor is in the following Table 20. 

Sub system blocks accessible to reference: 
access routines and Base Address for Wishbone Bus slaves 

Part Name Reference Class Base Address (hex)* 
only 8 MSB 

 
Controller of Run mrunControl 00 

Controller of Trigger triggerControl 01 

Generator of data for test/debug sys communication dataGenerator 02 

I2C bus (Master) Controller i2cMaster 03 

Data (Interface) Controller controlInterface  04 

Pulse Generator to readout device pulser 05 

*Please Note: this is a provisional mapping of Base Address which can change in final release. 
For the correct mapping (in use) it is mandatory refer to the current version of file mapping.pkg. 

Table 20: Sub system logic blocks accessible from external 



4.0  Using the system 
 

User’s Manual   Page 4-2 

4.1 Classes and Records Access Methods 

As we said, commands to different blocks are sent through a Wishbone bus by means of IP Bus control 
packets going from a software (UDP) client to the hardware target. However thanks to software routines 
user does not really need to write Ethernet packets (which will contain proper Wishbone bus command 
wrapped in IP/UDP packet). Those routines are actually C++ classes. 

Evidently, to work, every new instance of the classes, operating on the Wishbone bus, needs a pointer to 
the Wishbone bus interface and the base address of the block on it. 

As general remark in the following: we refer to standard integer types and exact-width integer types, for 
instance like uint32_t  = unsigned integer type with width of exactly 32 bits, according to definitions from 
standard headers  <cstdint> and <stdint.h>  since C99 [ISO/IEC 9899:1999   p. 264, § 7.18 Integer types]. 

Ultimately documentation of reference classes is generated by Doxygen software version 1.8.9.1 and 
supplied aside the present document as HTML file.  More details about Doxygen software can be found 
on line (http://www.stack.nl/~dimitri/doxygen/) as in reference item number [11] at page 1-13. 

The doxy-generated file is useful to illustrate in web pages, detached for classes, functions for addressing 
and performing tasks, either on MOSAIC infrastructure or on its single part (sub-systems) beside to 
visualize structure and relations in between. 

http://www.stack.nl/~dimitri/doxygen/�

	1 GENERAL INFORMATION
	1.1 System Overview
	1.1.1 First I/O LVDS ports
	a. Both LVDS port are made by a Robinson Nugent P 50E-068-P1-SR1-TG multi-pin connector, whose pin-out is shown in the following Figure 2.
	b. All LVDS signals are connected to FPGA pins (§bank number 13, 15 and 16) according to the classification proposed hereby which assign to every pin the suffix EXT followed by channel number, connector row and signal polarity.
	c. In the released MOSAIC device all signals are compliant with LVDS.

	1.1.2 Second I/O LVDS ports
	1.1.3 LEMO ports
	a. There are four LEMO connectors of four separate channels provided for boards cooperation, for instance with signal such as Common clock, Trigger, Busy.
	b. The four channels are compliant with fast logic NIM standard also known as NIM logic. 
	c. With reference to the picture in Figure 3, each connector can be configured to work as input or output by soldering jumpers located at the back of and close by the same connectors namely J8, J9, J17 and J18 respectively for the NIM signals numbered from 1 to 4. Each jumper merely consist of three pads; a soldering contact of the upper pad (I) with the middle pad (II) configure the channel as output and vice versa a soldering contact between the middle and the lower pad (II in contact with III) set the related channel as input. It is worth to notice that the adjectives upper and lower are here used with respect to orientation of Figure 1.

	1.1.4 High Speed Input/Output ports
	a. On the front panel there is a connector devoted to receive high speed signals and more in general to be connected with high speed devices. These channels are connected with ten high speed serial links and other ports of FPGA, following the pin-out shown in Table 1.
	b. Please NOTICE that only pins from first two rows (A and B) are connected resulting that the bottom plug is totally unconnected. Therefore lower plug cannot be used and it has to be left empty.
	c. Moreover all pins named GND are directly connected to the same ground on the PCB.
	d. The two channels named HSA and HSB at pins 31-35 of the row B are connected to M-LVDS drivers (multipoint low voltage differential signalling) compliant with standard TIA/EIA-899. As you expect for differential signals each channel take up two pins, denoted by (+) for positive and (-) for negative, beside ground pins.
	e. There are last two differential channels for clock distribution to the DUT. Those are located at pins 31-35 of the row A and referred to as CLK40 in reference to an expected Front-End clock frequency of 40MHz.
	f. In the matter of serial links velocity we can point out that respective clocks signal are supplied by a Phase Locked Loop which is programmed through the FPGA. Therefore serial link are versatile and can be easily adapted to work at different frequencies in various applications.
	g. The port consists of a connecter HDI6-035-01-RA with cage HDC-035-01. According to the producer (Samtec) HDI6 denotes the 0,635 mm Eye Speed® HD connector at High Speed with High Density Receptacle, while 035 indicates the number of positions (per row).
	The pinset is shown in the following Figure 4.

	1.1.5 Ethernet port
	1.1.6 FMC first slot
	1.1.7 FMC second slot
	1.1.8 Plugs to Versa Modular Eurocard 6U compliant chassis.
	1.1.9 FPGA
	1.1.10 DDR3 memory
	1.1.11    CPU LED
	1.1.12    LEDs first block
	1.1.13    LEDs second block
	1.1.14    PUSH BUTTON

	1.2 Project References
	1.3 Authorized Use Permission
	1.4 Information

	2 SYSTEM SUMMARY
	2.1 System Architecture: Firmware
	2.2 Receiver Buffer
	2.2.1 Reading request and latency of packets in receiver buffer
	2.2.2 The header of packets from receiver buffer
	2.2.3 Size of data packet for transmission: the role of Data Collector
	2.2.4 Remarks about Flags

	2.3 Addressing Wishbone Bus
	2.4 Front-End and Modes of Operation
	2.5 Pulser
	2.5.1 How to set different operation modes for pulsing
	2.5.2 Trigger and Pulse Delay
	2.5.3 Number of pulses and general cautions

	2.6 Data generator
	2.6.1 How to set Data Generator

	2.7 Trigger Control Unit
	2.7.1 Enable external trigger

	2.8 Function and Data Flows
	2.9 IP bus control packet
	2.9.1 IPbus Header
	2.9.2 IPbus Info Codes
	2.9.3 IPbus Transaction Types


	3 GETTING STARTED
	3.1 IP address configuration
	3.2 Firmware upgrade
	3.3 Network considerations
	3.4 Launch the readout test program

	4 USING THE SYSTEM
	4.1 Classes and Records Access Methods


